Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.246
Filtrar
1.
PLoS One ; 19(4): e0302292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626181

RESUMO

Proteins containing domain of unknown function (DUF) are prevalent in eukaryotic genome. The DUF1216 proteins possess a conserved DUF1216 domain resembling to the mediator protein of Arabidopsis RNA polymerase II transcriptional subunit-like protein. The DUF1216 family are specifically existed in Brassicaceae, however, no comprehensive evolutionary analysis of DUF1216 genes have been performed. We performed a first comprehensive genome-wide analysis of DUF1216 proteins in Brassicaceae. Totally 284 DUF1216 genes were identified in 27 Brassicaceae species and classified into four subfamilies on the basis of phylogenetic analysis. The analysis of gene structure and conserved motifs revealed that DUF1216 genes within the same subfamily exhibited similar intron/exon patterns and motif composition. The majority members of DUF1216 genes contain a signal peptide in the N-terminal, and the ninth position of the signal peptide in most DUF1216 is cysteine. Synteny analysis revealed that segmental duplication is a major mechanism for expanding of DUF1216 genes in Brassica oleracea, Brassica juncea, Brassica napus, Lepidium meyneii, and Brassica carinata, while in Arabidopsis thaliana and Capsella rubella, tandem duplication plays a major role in the expansion of the DUF1216 gene family. The analysis of Ka/Ks (non-synonymous substitution rate/synonymous substitution rate) ratios for DUF1216 paralogous indicated that most of gene pairs underwent purifying selection. DUF1216 genes displayed a specifically high expression in reproductive tissues in most Brassicaceae species, while its expression in Brassica juncea was specifically high in root. Our studies offered new insights into the phylogenetic relationships, gene structures and expressional patterns of DUF1216 members in Brassicaceae, which provides a foundation for future functional analysis.


Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/genética , Duplicação Gênica , Filogenia , Evolução Molecular , Genoma de Planta , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/química , Mostardeira/genética , Sinais Direcionadores de Proteínas/genética , Regulação da Expressão Gênica de Plantas
2.
Lasers Med Sci ; 39(1): 99, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602564

RESUMO

In recent years, there has been a growing interest in traditional medicinal practices such as Ayurveda, which emphasizes the use of natural ingredients for various therapeutic purposes. Vegetable oils are an integral part of our diet and have several applications in the cosmetics and healthcare industries. These oils have also been prescribed in ancient Ayurveda texts to treat various health problems. Ayurveda prescribes a processing technique called 'Murchana' to improve the therapeutic nature of the oils. Spectroscopic techniques have been used for quality assessment in many fields. High sensitivity and a low detection rate make spectroscopy a formidable analytical technique. This study focusses on the spectroscopic analysis of sesame and mustard oils prepared using the ayurvedic processing method 'Murchana'. Spectroscopic analysis techniques including UV-Vis absorbance spectroscopy, fluorescence spectroscopy, and FTIR spectroscopy were employed to study the oils. Origin software was used to plot graphs of the spectra. The results indicated that the murchana process may reduce the components of the oil responsible for its oxidation, thereby increasing the shelf life of the oils. However, further investigations, including other spectroscopy and chromatography techniques, will prove beneficial in ascertaining the effects of the murchana process on vegetable oils. The study's findings also suggest that spectroscopic techniques can be used to supplement chemical techniques to investigate the characteristics of vegetable oils.


Assuntos
Mostardeira , Sesamum , Óleos de Plantas , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Nutrients ; 16(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542756

RESUMO

Obesity is a global health concern. Recent research has suggested that the development of anti-obesity ingredients and functional foods should focus on natural products without side effects. We examined the effectiveness and underlying mechanisms of Brassica juncea extract (BJE) in combating obesity via experiments conducted in both in vitro and in vivo obesity models. In in vitro experiments conducted in a controlled environment, the application of BJE demonstrated the ability to suppress the accumulation of lipids induced by MDI in 3T3-L1 adipocytes. Additionally, it downregulated adipogenic-related proteins peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), adipocyte protein 2 (aP2), and lipid synthesis-related protein acetyl-CoA carboxylase (ACC). It also upregulated the heat generation protein peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and fatty acid oxidation protein carnitine palmitoyltransferase-1 (CPT-1). The oral administration of BJE decreased body weight, alleviated liver damage, and inhibited the accumulation of lipids in mice with diet-induced obesity resulting from a high-fat diet. The inhibition of lipid accumulation by BJE in vivo was associated with a decreased expression of adipogenic and lipid synthesis proteins and an increased expression of heat generation and fatty acid oxidation proteins. BJE administration improved obesity by decreasing adipogenesis and activating heat generation and fatty acid oxidation in 3T3-L1 cells and in HFD-induced obese C57BL/6J mice. These results suggest that BJE shows potential as a natural method for preventing metabolic diseases associated with obesity.


Assuntos
Fármacos Antiobesidade , Mostardeira , Camundongos , Animais , Células 3T3-L1 , Mostardeira/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fármacos Antiobesidade/uso terapêutico , Obesidade/metabolismo , Adipogenia , Lipídeos/farmacologia , Ácidos Graxos/farmacologia , PPAR gama/metabolismo
4.
J Environ Manage ; 355: 120538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452623

RESUMO

Prolonged wastewater irrigation in agriculture has led to the accumulation of heavy metals in soil, endangering both the soil quality and food safety, thereby posing a potential threat to human health through the consumption of contaminated crops. The present study aimed to enhance the yield of mustard (Brassica juncea L. cv. Varuna and NRCHB 101) plants and stabilize heavy metals (Cd, Cr, Ni, Cu, and Zn) in wastewater-irrigated soil using rice husk ash (RHA), rice mill by-product, collected from Chandauli region of Eastern Uttar Pradesh, India. Results demonstrated significant improvements in growth, biomass, physiology, and yield of mustard plant with increasing RHA application in wastewater irrigated soil (p ≤ 0.05). Heavy metal accumulation in different parts of mustard plants decreased as RHA application rate increased. Applying RHA at 2% in soil proved to be most effective in reducing Cd, Cr, Ni, Cu, and Zn accumulation in seeds by 29%, 29.6%, 23.1%, 21.3% and 20.1%, respectively in Varuna and 30.1%, 21.4%, 11.1%, 12.1%, and 28.5%, respectively in NRCHB 101cultivars. The present findings showed that RHA amendment in wastewater irrigated soil had reduced bioaccumulation of Cd, Cr, Ni, Cu, and Zn and consequently their toxicity in cultivated mustard plants. A novel application of RHA is unveiled in this research, offering a promising solution to promote sustainable agriculture and to reduce heavy metal associated health risks within the soil-mustard system.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Humanos , Solo , Mostardeira , Águas Residuárias , Ecossistema , Cádmio , Metais Pesados/análise , Poluentes do Solo/análise , Monitoramento Ambiental
5.
Food Chem ; 446: 138870, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430771

RESUMO

Mustard (Brassica spp.) is one of the world's oldest condiments in the food basket, which holds a significant place in the global culinary landscape due to historical prominence and perceived health benefits. This study explores the extraction of oils from Mustard seeds by employing traditional 'Kolhu' method, modern supercritical fluid, and solvent extraction techniques. This study, for the first-time, identified Aurantiamide acetate, a potent anti-cancer dipeptide in Mustard seeds using ultra-performance liquid chromatography-mass spectrometry coupled with quadrupole time-of-flight (UPLC/MS-QToF) analytical platform. The analytical methodology was meticulously validated encompassing optimal parameters such as limit of detection, limit of quantification, precision, accuracy, linearity and robustness, within the range. Interestingly, 'Kolhu' method of oil extraction exhibited better yield of Aurantiamide acetate, suggesting superior efficiency of traditional methods. This study accentuates the importance of classical extraction methods, used traditionally, and emphasizes that naturally occurring substances indeed could be harnessed for better health.


Assuntos
Mostardeira , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , 60705 , Dipeptídeos , Sementes
6.
Plant Physiol Biochem ; 207: 108404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330777

RESUMO

S-nitrosoglutathione reductase (GSNOR). a master regulator of NO homeostasis, is a single-copy gene in most plants. In Lotus japonicus, two GSNOR isoforms were identified exhibiting similar kinetic properties but differential tissue-specific expressions. Previously, a genome-wide identification in Brassica juncea revealed four copies of GSNOR, each encoding proteins that vary in subunit molecular weights and pI. Here, we report multiple forms of GSNOR using 2D immunoblot which showed 4 immunopositive spots of 41.5 kDa (pl 5.79 and 6.78) and 43 kDa (pl 6.16 and 6.23). To confirm, purification of GSNOR using anion-exchange chromatography yielded 2 distinct pools (GSNOR-A & GSNOR-B) with GSNOR activities. Subsequently, affinity-based purification resulted in 1 polypeptide from GSNOR-A and 2 polypeptides from GSNOR-B. Size exclusion-HPLC confirmed 3 GSNORs with molecular weight of 87.48 ± 2.74 KDa (GSNOR-A); 87.36 ± 3.25 and 82.74 ± 2.75 kDa (GSNOR-B). Kinetic analysis showed Km of 118 ± 11 µM and Vmax of 287 ± 22 nkat/mg for GSNOR-A, whereas Km of 96.4 ± 8 µM and Vmax of 349 ± 15 nkat/mg for GSNOR-B. S-nitrosylation and inhibition by NO showed redox regulation of all BjGSNORs. Both purified GSNORs exhibited variable denitrosylation efficiency as depicted by Biotin Switch assay. To the best of our knowledge, this is the first report confirming multiple isoforms of GSNOR in B. juncea.


Assuntos
Mostardeira , Oxirredutases , Oxirredutases/metabolismo , Mostardeira/genética , Mostardeira/metabolismo , Cinética , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Isoformas de Proteínas/metabolismo , Óxido Nítrico/metabolismo
7.
Funct Integr Genomics ; 24(2): 43, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418630

RESUMO

Rapeseed-mustard, the oleiferous Brassica species are important oilseed crops cultivated all over the globe. Mustard aphid Lipaphis erysimi (L.) Kaltenbach is a major threat to the cultivation of rapeseed-mustard. Wild mustard Rorippa indica (L.) Hiern shows tolerance to mustard aphids as a nonhost and hence is an important source for the bioprospecting of potential resistance genes and defense measures to manage mustard aphids sustainably. We performed mRNA sequencing of the R. indica plant uninfested and infested by the mustard aphids, harvested at 24 hours post-infestation. Following quality control, the high-quality reads were subjected to de novo assembly of the transcriptome. As there is no genomic information available for this potential wild plant, the raw reads will be useful for further bioinformatics analysis and the sequence information of the assembled transcripts will be helpful to design primers for the characterization of specific gene sequences. In this study, we also used the generated resource to comprehensively analyse the global profile of differential gene expression in R. indica in response to infestation by mustard aphids. The functional enrichment analysis of the differentially expressed genes reveals a significant immune response and suggests the possibility of chitin-induced defense signaling.


Assuntos
Afídeos , Rorippa , Animais , Mostardeira/genética , Transcriptoma , Afídeos/genética , Rorippa/genética
8.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391484

RESUMO

The interaction and coevolution between nuclear and cytoplasmic genomes are one of the fundamental hallmarks of eukaryotic genome evolution and, 2 billion yr later, are still major contributors to the formation of new species. Although many studies have investigated the role of cytonuclear interactions following allopolyploidization, the relative magnitude of the effect of subgenome dominance versus cytonuclear interaction on genome evolution remains unclear. The Brassica triangle of U features 3 diploid species that together have formed 3 separate allotetraploid species on similar evolutionary timescales, providing an ideal system for understanding the contribution of the cytoplasmic donor to hybrid polyploid. Here, we investigated the evolutionary pattern of organelle-targeted genes in Brassica carinata (BBCC) and 2 varieties of Brassica juncea (AABB) at the whole-genome level, with particular focus on cytonuclear enzyme complexes. We found partial evidence that plastid-targeted genes experience selection to match plastid genomes, but no obvious corresponding signal in mitochondria-targeted genes from these 2 separately formed allopolyploids. Interestingly, selection acting on plastid genomes always reduced the retention rate of plastid-targeted genes encoded by the B subgenome, regardless of whether the Brassica nigra (BB) subgenome was contributed by the paternal or maternal progenitor. More broadly, this study illustrates the distinct selective pressures experienced by plastid- and mitochondria-targeted genes, despite a shared pattern of inheritance and natural history. Our study also highlights an important role for subgenome dominance in allopolyploid genome evolution, even in genes whose function depends on separately inherited molecules.


Assuntos
Evolução Molecular , Genoma de Planta , Mostardeira/genética , Plastídeos/genética , Poliploidia
9.
Environ Monit Assess ; 196(3): 321, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418671

RESUMO

The mustard (Brassica juncea L.) plant is a well-known and widely accepted hyper-accumulator of heavy metals. The genetic makeup of mustard's cultivars may significantly impact their phytoremediation capabilities. The present study aimed to investigate the growth performance, yield attributes, and heavy metal accumulation potential of B. juncea cv. Varuna, NRCHB 101, RH 749, Giriraj, and Kranti, cultivated in soil irrigated with wastewater (EPS) and bore-well water (MPS). EPS contributed more Cr, Cd, Cu, Zn, and Ni to tested mustard cultivars than the MPS. EPS reduced morphological, biochemical, physiological, and yield attributes of tested mustard cultivars significantly (p < 0.05) than the MPS. Among the tested cultivars of mustard plants, Varuna had the highest heavy metal load with the lowest harvest index (35.8 and 0.21, respectively). Whereas NRCHB 101 showed the lowest heavy metal load with the highest harvest index (26.9 and 0.43, respectively). The present study suggests that B. juncea cv. Varuna and NRCHB 101 could be used for the phytoextraction of heavy metals and reducing their contamination in food chain, respectively in wastewater irrigated areas of peri-urban India. The outcomes of the present study can also be utilized to develop a management strategy for sustainable agriculture in heavy metal polluted areas resulting from long-term wastewater irrigation.


Assuntos
Metais Pesados , Poluentes do Solo , Águas Residuárias , Mostardeira , Solo , Biodegradação Ambiental , Monitoramento Ambiental , Poluentes do Solo/análise , Metais Pesados/análise
10.
Physiol Plant ; 176(1): e14202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356406

RESUMO

Drought, a widespread abiotic stressor, exerts a profound impact on agriculture, impeding germination and plant growth, and reducing crop yields. In the present investigation, the osmotolerant rhizobacteria Bacillus casamancensis strain MKS-6 and Bacillus sp. strain MRD-17 were assessed for their effects on molecular processes involved in mustard germination under osmotic stress conditions. Enhancement in germination was evidenced by improved germination percentages, plumule and radicle lengths, and seedling vigor upon rhizobacterial inoculation under no stress and osmotic stress conditions. Under osmotic stress, rhizobacteria stimulated the production of gibberellins and reserve hydrolytic enzymes (lipases, isocitrate lyase, and malate synthase), bolstering germination. Furthermore, these rhizobacteria influenced the plant hormones such as gibberellins and abscisic acid (ABA), as well as signalling pathways, thereby promoting germination under osmotic stress. Reduced proline and glycine betaine accumulation, and down-regulation of transcription factors BjDREB1_2 and BjDREB2 (linked to ABA-independent signalling) in rhizobacteria-inoculated seedlings indicated that bacterial treatment mitigated water deficit stress during germination, independently of these pathways. Hence, the advantageous attributes exhibited by these rhizobacterial strains can be effectively harnessed to alleviate drought-induced stress in mustard crops, potentially through the development of targeted bio-formulations.


Assuntos
Bacillus , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Germinação , Giberelinas/farmacologia , Mostardeira/metabolismo , Pressão Osmótica/fisiologia , Sementes , Plântula/fisiologia , Desidratação
11.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338852

RESUMO

Yellow seed breeding is an effective method to improve oil yield and quality in rapeseed (Brassica napus L.). However, naturally occurring yellow-seeded genotypes have not been identified in B. napus. Mustard (Brassica juncea L.) has some natural, yellow-seeded germplasms, yet the molecular mechanism underlying this trait remains unclear. In this study, a BC9 population derived from the cross of yellow seed mustard "Wuqi" and brown seed mustard "Wugong" was used to analyze the candidate genes controlling the yellow seed color of B. juncea. Subsequently, yellow-seeded (BY) and brown-seeded (BB) bulks were constructed in the BC9 population and subjected to bulked segregant RNA sequencing (BSR-Seq). A total of 511 differentially expressed genes (DEGs) were identified between the brown and yellow seed bulks. Enrichment analysis revealed that these DEGs were involved in the phenylpropanoid biosynthetic process and flavonoid biosynthetic process, including key genes such as 4CL, C4H, LDOX/TT18, PAL1, PAL2, PAL4, TT10, TT12, TT4, TT8, BAN, DFR/TT3, F3H/TT6, TT19, and CHI/TT5. In addition, 111,540 credible single-nucleotide polymorphisms (SNPs) and 86,319 INDELs were obtained and used for quantitative trait locus (QTL) identification. Subsequently, two significant QTLs on chromosome A09, namely, qSCA09-3 and qSCA09-7, were identified by G' analysis, and five DEGs (BjuA09PAL2, BjuA09TT5, BjuA09TT6, BjuA09TT4, BjuA09TT3) involved in the flavonoid pathway were identified as hub genes based on the protein-to-protein network. Among these five genes, only BjuA09PAL2 and BjuA09F3H had SNPs between BY and BB bulks. Interestingly, the majority of SNPs in BjuA09PAL2 were consistent with the SNPs identified between the high-quality assembled B. juncea reference genome "T84-66" (brown-seed) and "AU213" (yellow-seed). Therefore, BjuA09PAL2, which encodes phenylalanine lyase, was considered as the candidate gene associated with yellow seed color of B. juncea. The identification of a novel gene associated with the yellow seed coloration of B. juncea through this study may play a significant role in enhancing yellow seed breeding in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Mostardeira/genética , Melhoramento Vegetal , Brassica napus/genética , Brassica rapa/genética , Sementes/genética , Sementes/metabolismo , Flavonoides/metabolismo , Análise de Sequência de RNA
12.
Physiol Plant ; 176(1): e14178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38342492

RESUMO

The current scanty knowledge about the salt tolerance mechanism underlying the ability of plants to tolerate salt stress hinders the potential production of numerous crops, including Indian mustard. To explore the traits and mechanism for salt tolerance, high throughput phenotyping of 250 stabilized F7:8 recombinant inbred lines (RILs) mapping population of Indian mustard were conducted under control and salinity (ECiw 12 dS m-1 ) for 54 morpho-physio-seed-quality traits. Most of the traits were reduced with variable percentages under salt stress. The stress tolerance index (STI) of YPP showed a significant negative association with Na+ concentration of root (RNa), indicating that RILs with low Na+ concentration have high seed yield and a positive significant association with STI of yield-related traits, photosynthesis rate (Pn), intrinsic water use efficiency (inWUE), fresh weight of upper leaf (USFW), fresh weight of branches (BrFW), fresh weight of basal leaf (BLFW), and fresh weight of middle leaf (MLFW) revealed that by improving these traits seed yield per plant (YPP) was improved. Based on principal component analysis (PCA) of 54 STI and new index composite selection index (CSI), RILs viz., R114, R150, R164, R170, and R206 were identified as stable performers which can be exploited for quantitative trait loci (QTLs)/gene discovery and serve as potential donors to combat salt stress. Our research will serve to determine the relative importance of different functional traits of salt tolerance mechanisms that can be used to screen colossal germplasm.


Assuntos
Mostardeira , Locos de Características Quantitativas , Mostardeira/genética , Fenótipo , Genótipo , Locos de Características Quantitativas/genética , Fotossíntese/genética
13.
Mol Biol Rep ; 51(1): 199, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270712

RESUMO

BACKGROUND: Brassica species is the second most important edible oilseed crop in India. Albugo candida (Pers.) Kuntze, a major oomycete disease of oilseed brassica causing white rust, leads to 60% yield loss globally. The prevalence of A. candida race 2 (Ac2V) that specifically infects B. juncea, coupled with limitations of conventional methods has resulted in a dearth of white rust resistance resources in cultivated varieties. METHODS AND RESULTS: In an effort to develop resistant plants, Agrobacterium mediated genetic transformation of three B. juncea genotypes viz., susceptible host var. Varuna, along with its doubled haploid mutant lines C66 and C69 (showing moderate tolerance to field isolates of A. candida) was initiated to transfer resistance genes (WRR8Sf-2 and WRR9Hi-0) identified in Arabidopsis thaliana against race Ac2V, that encode for Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat proteins that recognize effectors of the pathogen races. CONCLUSIONS: Our results demonstrate that introduction of resistance genes from a tertiary gene pool by genetic transformation enhances disease resistance in B. juncea genotypes to a highly virulent Ac2V isolate.


Assuntos
Arabidopsis , Oomicetos , Mostardeira/genética , Genótipo , Agrobacterium , Arabidopsis/genética , Candida
14.
Artigo em Inglês | MEDLINE | ID: mdl-38180769

RESUMO

Mustard and canola oils are commonly used cooking oils in Asian countries such as India, Nepal, and Bangladesh, making them prone to adulteration. Argemone is a well-known adulterant of mustard oil, and its alkaloid sanguinarine has been linked with health conditions such as glaucoma and dropsy. Utilising a non-destructive spectroscopic method coupled with a chemometric approach can serve better for the detection of adulterants. This work aimed to evaluate the performance of various regression algorithms for the detection of argemone in mustard and canola oils. The spectral dataset was acquired from fluorescence spectrometer analysis of pure as well as adulterated mustard and canola oils with some local and commercial samples also. The prediction performance of the eight regression algorithms for the detection of adulterants was evaluated. Extreme gradient boosting regressor (XGBR), Category gradient boosting regressor (CBR), and Random Forest (RF) demonstrate potential for predicting adulteration levels in both oils with high R2 values.


Assuntos
Quimiometria , Mostardeira , Óleo de Brassica napus , Espectrometria de Fluorescência/métodos , Óleos de Plantas/química , Contaminação de Alimentos/análise
15.
Indian Pediatr ; 61(2): 139-144, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38217264

RESUMO

OBJECTIVES: To assess the effectiveness of using mustard seed filled pillows in preventing deformational plagiocephaly (DP) in premature infants. METHODS: A prospective open label randomized trial was conducted in a tertiary care hospital in South India. Eligible preterm infants born at ≤32 weeks and <1500 g admitted in the neonatal intensive care unit (NICU) were randomly allocated to the intervention and control groups. In addition to standard nesting, the intervention group was positioned using a mustard pillow, while the control group was positioned using nesting alone. Plagiocephaly was assessed using the Cranial Index (CI), Cranial Vault Asymmetry Index (CVAI) and Argenta classification within the first week and at 4 weeks postnatal age. RESULTS: Twenty-eight infants, each in the control and intervention groups, were included for analysis. At 4 weeks postnatal age, the intervention group had lower mean (SD) CVAI scores when compared to the control group [3.16 (1.89 vs 7.85 (2.63)] with adjusted odds ratio, aOR (95% CI) of 28.2 (3.8, 210.01), P < 0.01. More number of infants in the control group had plagiocephaly measured using Argenta classification [aOR (95% CI) 25.70 (2.80, 235.67), P < 0.01]. There were no differences in the Cranial Index scores in the intervention and control groups [aOR (95% CI) 0.41 (0.11, 1.52), P = 0.184]. CONCLUSION: A mustard seed pillow is an easily available and a cost-effective intervention for preventing plagiocephaly in hospitalized preterm infants.


Assuntos
Plagiocefalia não Sinostótica , Plagiocefalia , Humanos , Recém-Nascido , Idade Gestacional , Recém-Nascido Prematuro , Mostardeira , Plagiocefalia não Sinostótica/prevenção & controle , Estudos Prospectivos
16.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211970

RESUMO

AIMS: To reveal the inhibition mechanism of rose, mustard, and blended essential oils against Cladosporium allicinum isolated from Xinjiang naan, and investigate the effect of the three essential oils on oxidative damage and energy metabolism. METHODS AND RESULTS: Rose and mustard essential oils significantly inhibited mycelial growth and spore viability in a dose-dependent relationship. After essential oil treatment, the cell membrane permeability was altered, and significant leakage of intracellular proteins and nucleic acids occurred. SEM observations further confirmed the disruption of cell structure. ROS, MDA, and SOD measurements indicated that essential oil treatment induced a redox imbalance in C. allicinum, leading to cell death. As for energy metabolism, essential oil treatment significantly reduced Na+K+-ATPase, Ca2+Mg2+-ATPase, MDH activity, and CA content, impairing metabolic functions. Finally, storage experiments showed that all three essential oils ensured better preservation of naan, with mustard essential oil having the best antifungal effect. CONCLUSIONS: Rose and mustard essential oils and their blends can inhibit C. allicinum at multiple targets and pathways, destroying cell morphological structure and disrupting metabolic processes.


Assuntos
Cladosporium , Óleos Voláteis , Rosa , Óleos Voláteis/farmacologia , Antifúngicos/farmacologia , Mostardeira , Óleos de Plantas/farmacologia
17.
Sci Rep ; 14(1): 797, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191635

RESUMO

Physicochemical and phytochemical assessment of leaf mustard (Brassica juncea L.) grown in different agroclimatic conditions is essential to highlight their compositional variability and evaluate the most suitable bunch of agroclimatic and agronomic practices. B. juncea is one of the important leafy vegetables that serve as source of vitamin A and C and iron, and plenty of antioxidants. This in situ research was executed to assess the quality variability of B. juncea grown in different agroecosystems. Leaves' samples of B. juncea were procured from 15 farmers' fields exhibiting different agroclimatic conditions i.e., elevation, nutrient management, temperature, irrigation, and tillage practices. Leaves' samples were subjected to physicochemical and phytochemical analysis, i.e., moisture, pH, TSS, ascorbic acid, carotenoids, phenolics, flavonoids, and antioxidant potential. In the leaves' samples of B. juncea, the target properties were found to vary significantly (P ≤ 0.05) in different agroclimatic conditions. The moisture content, ascorbic acid, phenolic content, carotenoids, and antioxidants were found in the range of 62.7-79.3%, 74-91 mg/100 g, 49.2-49.2 mg GAE/100 g, 436.3-480 mg ß carotene/100 g, 32.7-46.67%, respectively. This study elaborates the significant variation of physicochemical and phytochemical attributes of B. juncea due to the prevailing agroclimatic conditions. This necessitates the appropriate choice of B. juncea concerning its composition and ecological conditions of its cultivation in the prospective health benefits.


Assuntos
Antioxidantes , Mostardeira , Ácido Ascórbico , Carotenoides , Fenóis , Compostos Fitoquímicos
18.
Microb Cell Fact ; 23(1): 27, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38238808

RESUMO

BACKGROUND: Pickled mustard, the largest cultivated vegetable in China, generates substantial waste annually, leading to significant environmental pollution due to challenges in timely disposal, leading to decomposition and sewage issues. Consequently, the imperative to address this concern centers on the reduction and comprehensive resource utilization of raw mustard waste (RMW). To achieve complete and quantitative resource utilization of RMW, this study employs novel technology integration for optimizing its higher-value applications. RESULTS: Initially, subcritical hydrothermal technology was applied for rapid decomposition, with subsequent ammonia nitrogen removal via zeolite. Thereafter, photosynthetic bacteria, Rhodopseudomonas palustris, were employed to maximize hydrogen and methane gas production using various fermentation enhancement agents. Subsequent solid-liquid separation yielded liquid fertilizer from the fermented liquid and soil amendment from solid fermentation remnants. Results indicate that the highest glucose yield (29.6 ± 0.14) was achieved at 165-173℃, with a total sugar content of 50.2 g/L and 64% glucose proportion. Optimal ammonia nitrogen removal occurred with 8 g/L zeolite and strain stable growth at 32℃, with the highest OD600 reaching 2.7. Several fermentation promoters, including FeSO4, Neutral red, Na2S, flavin mononucleotide, Nickel titanate, Nickel oxide, and Mixture C, were evaluated for hydrogen production. Notably, Mixture C resulted in the maximum hydrogen production (756 mL), a production rate of 14 mL/h, and a 5-day stable hydrogen production period. Composting experiments enhanced humic acid content and organic matter (OM) by 17% and 15%, respectively. CONCLUSIONS: This innovative technology not only expedites RMW treatment and hydrogen yield but also substantially enriches soil fertility. Consequently, it offers a novel approach for low-carbon, zero-pollution RMW management. The study's double outcomes extend to large-scale RMW treatment based on the aim of full quantitative resource utilization of RMW. Our method provides a valuable reference for waste management in similar perishable vegetable plantations.


Assuntos
Solo , Zeolitas , Hidrogênio , Amônia , Mostardeira , Nitrogênio , Glucose
19.
Plant Cell Environ ; 47(4): 1009-1022, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37961842

RESUMO

Knowledge of plant recognition of insects is largely limited to a few resistance (R) genes against sap-sucking insects. Hypersensitive response (HR) characterizes monogenic plant traits relying on R genes in several pathosystems. HR-like cell death can be triggered by eggs of cabbage white butterflies (Pieris spp.), pests of cabbage crops (Brassica spp.), reducing egg survival and representing an effective plant resistance trait before feeding damage occurs. Here, we performed genetic mapping of HR-like cell death induced by Pieris brassicae eggs in the black mustard Brassica nigra (B. nigra). We show that HR-like cell death segregates as a Mendelian trait and identified a single dominant locus on chromosome B3, named PEK (Pieris  egg- killing). Eleven genes are located in an approximately 50 kb region, including a cluster of genes encoding intracellular TIR-NBS-LRR (TNL) receptor proteins. The PEK locus is highly polymorphic between the parental accessions of our mapping populations and among B. nigra reference genomes. Our study is the first one to identify a single locus potentially involved in HR-like cell death induced by insect eggs in B. nigra. Further fine-mapping, comparative genomics and validation of the PEK locus will shed light on the role of these TNL receptors in egg-killing HR.


Assuntos
Borboletas , Mostardeira , Animais , Mostardeira/genética , Borboletas/genética , Plantas , Mapeamento Cromossômico
20.
Plant Sci ; 339: 111932, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030037

RESUMO

Myrosinases constitute an important component of the glucosinolate-myrosinase system responsible for interaction of plants with microorganisms, insects, pest, and herbivores. It is a distinctive feature of Brassicales. Multiple isozymes of myrosinases are present in the vacuoles. Active myrosinases are also present in the apoplast and the nucleus however, the similarity or difference in the biochemical properties with the vacuolar myrosinases are not known. Here, we have attempted to isolate, characterize, and identify myrosinases from seeds, seedlings, apoplast, and nucleus to understand these forms. 2D-CN/SDS-PAGE coupled with western blotting and MS have shown low abundant myrosinases (65/70/72/75 kDa) in seeds and seedlings and apoplast & nucleus of seedlings to exist as dimers, oligomers, and as protein complex. Nuclear membrane associated form of myrosinase was also identified. The present study for the first time has shown enzymatically active myrosinase-alpha-mannosidase complex in seedlings. Both 65 and 70 kDa myrosinase in seedlings were S-nitrosated. Nitric oxide donor treatment (GSNO) led to 25% reduction in myrosinase activity which was reversed by DTT suggesting redox regulation of myrosinase. These S-nitrosated myrosinases might be a component of NO signalling in B. juncea.


Assuntos
Mostardeira , Plântula , Mostardeira/metabolismo , Plântula/metabolismo , Óxido Nítrico , Glicosídeo Hidrolases/metabolismo , Sementes/metabolismo , Glucosinolatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...